期刊论文详细信息
JOURNAL OF ALGEBRA 卷:571
Quadratic complete intersections
Article
Eisenbud, David1  Peeva, Irena2  Schreyer, Frank-Olaf3 
[1] Univ Calif Berkeley, Math Dept, Berkeley, CA 94720 USA
[2] Cornell Univ, Math Dept, Ithaca, NY 14853 USA
[3] Univ Saarland, Math Dept, Campus E2 4, D-66123 Saarbrucken, Germany
关键词: Syzygies;    Complete intersections;    Matrix factorizations;    Quadrics;    Clifford algebras;    Enveloping algebras;   
DOI  :  10.1016/j.jalgebra.2019.11.031
来源: Elsevier
PDF
【 摘 要 】

We study Betti numbers of graded finitely generated modules over a quadratic complete intersection. In the case of codimension 1, we give a natural class of quadratic forms Q whose Clifford algebras are division rings, and deduce the possible Betti numbers of modules over the hypersurfaces Q = 0. Our approach leads to a new version of the Betti degree Conjecture. In higher codimensions, we obtain formulas for the Betti numbers in terms of the ranks of certain free modules in a higher matrix factorization. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_11_031.pdf 322KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次