期刊论文详细信息
| JOURNAL OF ALGEBRA | 卷:571 |
| Quadratic complete intersections | |
| Article | |
| Eisenbud, David1  Peeva, Irena2  Schreyer, Frank-Olaf3  | |
| [1] Univ Calif Berkeley, Math Dept, Berkeley, CA 94720 USA | |
| [2] Cornell Univ, Math Dept, Ithaca, NY 14853 USA | |
| [3] Univ Saarland, Math Dept, Campus E2 4, D-66123 Saarbrucken, Germany | |
| 关键词: Syzygies; Complete intersections; Matrix factorizations; Quadrics; Clifford algebras; Enveloping algebras; | |
| DOI : 10.1016/j.jalgebra.2019.11.031 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We study Betti numbers of graded finitely generated modules over a quadratic complete intersection. In the case of codimension 1, we give a natural class of quadratic forms Q whose Clifford algebras are division rings, and deduce the possible Betti numbers of modules over the hypersurfaces Q = 0. Our approach leads to a new version of the Betti degree Conjecture. In higher codimensions, we obtain formulas for the Betti numbers in terms of the ranks of certain free modules in a higher matrix factorization. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jalgebra_2019_11_031.pdf | 322KB |
PDF