期刊论文详细信息
JOURNAL OF ALGEBRA 卷:324
Projective pairs of profinite groups
Article
Bary-Soroker, Lior
关键词: Profinite group;    Projective group;    Pseudo algebraically closed;    PAC;    Embedding problem;   
DOI  :  10.1016/j.jalgebra.2010.08.011
来源: Elsevier
PDF
【 摘 要 】

We generalize the notion of a projective profinite group to a projective pair of a profinite group and a closed subgroup. We establish a connection with Pseudo Algebraically Closed (PAC) extensions of PAC fields: Let M be an algebraic extension of a PAC field K. Then M/K is PAC if and only if the corresponding pair of absolute Galois groups (Gal(M),Gal(K)) is projective. Moreover any projective pair can be realized as absolute Galois groups of a PAC extension of a PAC field. Using this characterization we construct new examples of PAC extensions of relatively small fields, e.g. unbounded abelian extensions of the rational numbers. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2010_08_011.pdf 227KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次