期刊论文详细信息
JOURNAL OF ALGEBRA 卷:318
A Schneider type theorem for hopf algebroids
Article
Ardizzoni, A.2  Boehm, G.1  Menini, C.2 
[1] Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary
[2] Univ Ferrara, Dept Math, I-44100 Ferrara, Italy
关键词: relative separable functors;    relative injective comodule algebras;    Hopf algebroids;    Galois extensions;   
DOI  :  10.1016/j.jalgebra.2007.05.017
来源: Elsevier
PDF
【 摘 要 】

Comodule algebras of a Hopf algebroid H with a bijective antipode, i.e. algebra extensions B subset of A by H, are studied. Assuming that a lifted canonical map is a split epimorphism of modules of the (non-commutative) base algebra of H, relative injectivity of the H-comodule algebra A is related to the Galois property of the extension B subset of A and also to the equivalence of the category of relative Hopf modules to the category of B-modules. This extends a classical theorem by H.-J. Schneider on Galois extensions by a Hopf algebra. Our main tool is an observation that relative injectivity of a comodule algebra is equivalent to relative separability of a forgetful functor, a notion introduced and analysed hereby. (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2007_05_017.pdf 408KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次