期刊论文详细信息
JOURNAL OF ALGEBRA 卷:321
On the orders of zeros of irreducible characters
Article
Dolfi, Silvio1  Pacifici, Emanuele2  Sanus, Lucia3  Spiga, Pablo4 
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[3] Univ Valencia, Dept Algebra, Fac Matemat, E-46100 Valencia, Spain
[4] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
关键词: Finite groups;    Characters;    Zeros of characters;   
DOI  :  10.1016/j.jalgebra.2008.10.004
来源: Elsevier
PDF
【 摘 要 】

Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character X of G such that X(g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. (c) 2008 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2008_10_004.pdf 168KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次