期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:321 |
On the orders of zeros of irreducible characters | |
Article | |
Dolfi, Silvio1  Pacifici, Emanuele2  Sanus, Lucia3  Spiga, Pablo4  | |
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy | |
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy | |
[3] Univ Valencia, Dept Algebra, Fac Matemat, E-46100 Valencia, Spain | |
[4] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy | |
关键词: Finite groups; Characters; Zeros of characters; | |
DOI : 10.1016/j.jalgebra.2008.10.004 | |
来源: Elsevier | |
【 摘 要 】
Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character X of G such that X(g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. (c) 2008 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2008_10_004.pdf | 168KB | download |