期刊论文详细信息
JOURNAL OF ALGEBRA 卷:343
Groups that together with any transformation generate regular semigroups or idempotent generated semigroups
Article
Araujo, J.1,2  Mitchell, J. D.3  Schneider, Csaba1 
[1] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
[2] Univ Aberta, P-12690 Lisbon, Portugal
[3] Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词: Transformation semigroups;    Idempotent generated semigroups;    Regular semigroups;    Permutation groups;    Primitive groups;    O'Nan-Scott Theorem;   
DOI  :  10.1016/j.jalgebra.2011.07.002
来源: Elsevier
PDF
【 摘 要 】

Let a be a non-invertible transformation of a finite set and let G be a group of permutations on that same set. Then < G,a > \ G is a subsemigroup, consisting of all non-invertible transformations, in the semigroup generated by G and a. Likewise, the conjugates a(g) = g(-1)ag of a by elements of G generate a semigroup denoted by (a(g) vertical bar g is an element of G). We classify the finite permutation groups G on a finite set X such that the semigroups < G, a >, < G, a > backslash G, and < a(g) vertical bar go G) are regular for all transformations of X. We also classify the permutation groups G on a finite set X such that the semigroups (G, a) backslash G and (a(g) vertical bar g is an element of G) are generated by their idempotents for all non-invertible transformations of X. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2011_07_002.pdf 210KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次