期刊论文详细信息
JOURNAL OF ALGEBRA 卷:353
Rigid dualizing complexes over quantum homogeneous spaces
Article
Liu, L. -Y.1  Wu, Q. -S.1 
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词: Quantum homogeneous space;    Hopf algebra;    Rigid dualizing complex;    AS-Gorenstein;    Nakayama automorphism;   
DOI  :  10.1016/j.jalgebra.2011.12.007
来源: Elsevier
PDF
【 摘 要 】

A quantum homogeneous space of a Hopf algebra is a right coideal subalgebra over which the Hopf algebra is faithfully flat. It is shown that the Auslander-Gorenstein property of a Hopf algebra is inherited by its quantum homogeneous spaces. If the quantum homogeneous space B of a pointed Hopf algebra H is AS-Gorenstein of dimension d, then B has a rigid dualizing complex vB[d]. The Nakayama automorphism v is given by v = ad(g) o S-2 o Xi[tau], where ad(g) is the inner automorphism associated to some group-like element g is an element of H and Xi[tau] is the algebra map determined by the left integral of B. The quantum homogeneous spaces of U-q(sl(2)) are classified and all of them are proved to be Auslander-regular, AS-regular and Cohen-Macaulay. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2011_12_007.pdf 257KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次