JOURNAL OF ALGEBRA | 卷:527 |
Monomial G-posets and their Lefschetz invariants | |
Article | |
Bouc, Serge1  Mutlu, Hatice2  | |
[1] Univ Picardie Jules Verne, CNRS LAMFA, 33 Rue St Leu, F-80039 Amiens, France | |
[2] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey | |
关键词: Burnside ring; Monomial; Tensor induction; Lefschetz invariant; | |
DOI : 10.1016/j.jalgebra.2019.02.036 | |
来源: Elsevier | |
【 摘 要 】
Let G be a finite group, and C be an abelian group. We introduce the notions of C-monomial G-sets and C-monomial G-posets, and state some of their categorical properties. This gives in particular a new description of the C-monomial Burnside ring B-C(G). We also introduce Lefschetz invariants of C-monomial G-posets, which are elements of B-C(G). These invariants allow for a definition of a generalized tensor induction multiplicative map tau(U,lambda) BC (G) -> B-C(H) associated to any C-monomial (G, H)-biset (U, lambda), which in turn gives a group homomorphism B-C(G)(x) -> B-C(H)(x) between the unit groups of C-monomial Burnside rings. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2019_02_036.pdf | 511KB | download |