期刊论文详细信息
JOURNAL OF ALGEBRA 卷:385
A classification of commutative parabolic Hecke algebras
Article
Abramenko, Peter1  Parkinson, James2  Van Maldeghem, Hendrik3 
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
关键词: Hecke algebra;    Coxeter group;   
DOI  :  10.1016/j.jalgebra.2013.03.017
来源: Elsevier
PDF
【 摘 要 】

Let (W, S) be a Coxeter system with I subset of S such that the parabolic subgroup W-1 is finite. Associated to this data there is a Hecke algebra H and a parabolic Hecke algebra H-1 = 1(l)H1(l) (over a ring Z[q(s)](s is an element of S)). We give a complete classification of the commutative parabolic Hecke algebras across all Coxeter types. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2013_03_017.pdf 290KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次