期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:385 |
A classification of commutative parabolic Hecke algebras | |
Article | |
Abramenko, Peter1  Parkinson, James2  Van Maldeghem, Hendrik3  | |
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA | |
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia | |
[3] Univ Ghent, Dept Math, B-9000 Ghent, Belgium | |
关键词: Hecke algebra; Coxeter group; | |
DOI : 10.1016/j.jalgebra.2013.03.017 | |
来源: Elsevier | |
【 摘 要 】
Let (W, S) be a Coxeter system with I subset of S such that the parabolic subgroup W-1 is finite. Associated to this data there is a Hecke algebra H and a parabolic Hecke algebra H-1 = 1(l)H1(l) (over a ring Z[q(s)](s is an element of S)). We give a complete classification of the commutative parabolic Hecke algebras across all Coxeter types. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2013_03_017.pdf | 290KB | download |