JOURNAL OF ALGEBRA | 卷:482 |
Blue schemes, semiring schemes, and relative schemes after Toen and Vaquie | |
Article | |
Lorscheid, Oliver1  | |
[1] Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, Rio De Janeiro, Brazil | |
关键词: F1-geometry; Generalized scheme theory and; Grothendieck topologies; Monoids; | |
DOI : 10.1016/j.jalgebra.2017.03.023 | |
来源: Elsevier | |
【 摘 要 】
It is a classical insight that the Yoneda embedding defines an equivalence of schemes as locally ringed spaces with schemes as sheaves on the big Zariski site. Similarly, the Yoneda embedding identifies monoid schemes (or Fl -schemes in the sense of Deitmar) with schemes relative to sets (in the sense of Toen and Vaquie). In this paper, we investigate the generalization to blue schemes and to semiring schemes. We establish Yoneda functors for both scheme theories. These functors fail, however, to be equivalences in both situations. The reason for this failure is a divergence in the Grothendieck pretopologies coming from schemes as topological spaces and schemes as sheaves. Restricted to blue schemes that are locally of finite type over a blue field, we construct an inverse to the Yoneda functor, which establishes an equivalence for this subclass of blue schemes. Moreover, we verify the compatibility of the Yoneda functors with the base extension from blue schemes to semiring schemes and with the base extension from semiring schemes to usual schemes. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2017_03_023.pdf | 684KB | download |