期刊论文详细信息
JOURNAL OF ALGEBRA 卷:517
Lie algebras simple with respect to a Taft algebra action
Article
Gordienko, Alexey1 
[1] Vrije Univ Brussel, Brussels, Belgium
关键词: Polynomial identity;    H-module algebra;    Taft algebra;    Codimension;    PI-exponent;    Lie algebra;   
DOI  :  10.1016/j.jalgebra.2018.10.008
来源: Elsevier
PDF
【 摘 要 】

We classify finite dimensional H-m2(zeta)-simple H-m2 (zeta)-module Lie algebras L over an algebraically closed field of characteristic 0 where H-m2(zeta) is the mth Taft algebra. As an application, we show that despite the fact that L can be non-semisimple in ordinary sense, lim(n)->infinity (n)root c(n)(Hm2(zeta))(L) = dim L where c(n)(Hm2(zeta))(L) is the codimension sequence of polynomial H-m2(zeta)-identities of L. In particular, the analog of Amitsur's conjecture holds for c(n)(Hm2(zeta))(L). (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_10_008.pdf 519KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次