期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:517 |
Lie algebras simple with respect to a Taft algebra action | |
Article | |
Gordienko, Alexey1  | |
[1] Vrije Univ Brussel, Brussels, Belgium | |
关键词: Polynomial identity; H-module algebra; Taft algebra; Codimension; PI-exponent; Lie algebra; | |
DOI : 10.1016/j.jalgebra.2018.10.008 | |
来源: Elsevier | |
【 摘 要 】
We classify finite dimensional H-m2(zeta)-simple H-m2 (zeta)-module Lie algebras L over an algebraically closed field of characteristic 0 where H-m2(zeta) is the mth Taft algebra. As an application, we show that despite the fact that L can be non-semisimple in ordinary sense, lim(n)->infinity (n)root c(n)(Hm2(zeta))(L) = dim L where c(n)(Hm2(zeta))(L) is the codimension sequence of polynomial H-m2(zeta)-identities of L. In particular, the analog of Amitsur's conjecture holds for c(n)(Hm2(zeta))(L). (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2018_10_008.pdf | 519KB | download |