JOURNAL OF ALGEBRA | 卷:501 |
On the existence of birational surjective parametrizations of affine surfaces | |
Article | |
Caravantes, J.1  Sendra, J. R.2  Sevilla, D.3  Villarino, C.2  | |
[1] Univ Complutense Madrid, Res Grp GVP, Dept Algebra, Plaza Ciencias 3, E-28040 Madrid, Spain | |
[2] Univ Alcala, Dept Fis & Matemat, Res Grp ASYNACS, Alcala De Henares 28871, Madrid, Spain | |
[3] Univ Extremadura, Ctr U Merida, Res Grp GADAC, Av Santa Teresa de Jornet 38, Merida 06800, Badajoz, Spain | |
关键词: Rational surface; Birational parametrization; Surjective parametrization; | |
DOI : 10.1016/j.jalgebra.2017.12.028 | |
来源: Elsevier | |
【 摘 要 】
In this paper we show that not all affine rational complex surfaces can be parametrized birational and surjectively. For this purpose, we prove that, if S is an affine complex surface whose projective closure is smooth, a necessary condition for S to admit a birational surjective parametrization from an open subset of the affine complex plane is that the curve at infinity of S must contain at least one rational component. As a consequence of this result we provide examples of affine rational surfaces that do not admit birational surjective parametrizations. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2017_12_028.pdf | 299KB | download |