期刊论文详细信息
JACC-CARDIOVASCULAR IMAGING 卷:10
Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis
Article
Chin, Calvin W. L.1,2  Everett, Russell J.1  Kwiecinski, Jacek1,3  Vesey, Alex T.1  Yeung, Emily1  Esson, Gavin1  Jenkins, William1  Koo, Maria1  Mirsadraee, Saeed1  White, Audrey C.1  Japp, Alan G.1  Prasad, Sanjay K.4  Semple, Scott5  Newby, David E.1  Dweck, Marc R.1 
[1] Univ Edinburgh, BHF Ctr Cardiovasc Sci, Chancellors Bldg,49 Little France Crescent, Edinburgh EH16 4SB, Midlothian, Scotland
[2] Natl Heart Ctr, Dept Cardiovasc Sci, Singapore, Singapore
[3] Poznan Univ Med Sci, Dept Cardiol 1, Poznan, Poland
[4] Royal Brompton Hosp, London, England
[5] Univ Edinburgh, Clin Res Imaging Ctr, Edinburgh, Midlothian, Scotland
关键词: aortic stenosis;    fibrosis;    hypertrophy;    magnetic resonance imaging;    myocardium;    T1 mapping;   
DOI  :  10.1016/j.jcmg.2016.10.007
来源: Elsevier
PDF
【 摘 要 】

OBJECTIVES Cardiac magnetic resonance (CMR) was used to investigate the extracellular compartment and myocardial fibrosis in patients with aortic stenosis, as well as their association with other measures of left ventricular decompensation and mortality. BACKGROUND Progressive myocardial fibrosis drives the transition from hypertrophy to heart failure in aortic stenosis. Diffuse fibrosis is associated with extracellular volume expansion that is detectable by T1 mapping, whereas late gadolinium enhancement (LGE) detects replacement fibrosis. METHODS In a prospective observational cohort study, 203 subjects (166 with aortic stenosis [69 years; 69% male]; 37 healthy volunteers [68 years; 65% male]) underwent comprehensive phenotypic characterization with clinical imaging and biomarker evaluation. On CMR, we quantified the total extracellular volume of the myocardium indexed to body surface area (iECV). The iECV upper limit of normal from the control group (22.5 ml/m(2)) was used to define extracellular compartment expansion. Areas of replacement mid-wall LGE were also identified. All-cause mortality was determined during 2.9 +/- 0.8 years of follow up. RESULTS iECV demonstrated a good correlation with diffuse histological fibrosis on myocardial biopsies (r = 0.87; p < 0.001; n = 11) and was increased in patients with aortic stenosis (23.6 +/- 7.2 ml/m(2) vs. 16.1 +/- 3.2 ml/m(2) in control subjects; p < 0.001). iECV was used together with LGE to categorize patients with normal myocardium (iECV < 22.5 ml/m(2); 51% of patients), extracellular expansion (iECV >= 22.5 ml/m(2); 22%), and replacement fibrosis (presence of mid-wall LGE, 27%). There was evidence of increasing hypertrophy, myocardial injury, diastolic dysfunction, and longitudinal systolic dysfunction consistent with progressive left ventricular decompensation (all p < 0.05) across these groups. Moreover, this categorization was of prognostic value with stepwise increases in unadjusted all-cause mortality (8 deaths/1,000 patient-years vs. 36 deaths/1,000 patient-years vs. 71 deaths/1,000 patient-years, respectively; p = 0.009). CONCLUSIONS CMR detects ventricular decompensation in aortic stenosis through the identification of myocardial extracellular expansion and replacement fibrosis. This holds major promise in tracking myocardial health in valve disease and for optimizing the timing of valve replacement. (C) 2017 by the American College of Cardiology Foundation. Published by Elsevier.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcmg_2016_10_007.pdf 1738KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次