INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES | 卷:47 |
A two-scale model for subcritical damage propagation | |
Article | |
Dascalu, Cristian1  Francois, Bertrand1  Keita, Oumar1  | |
[1] CNRS, UMR 5521, INPG, UJF,Lab Sols Solides Struct Risques, F-38041 Grenoble 9, France | |
关键词: Micro-cracks; Subcritical propagation; Homogenization; Time-dependent damage; Relaxation; Creep; Size effect; | |
DOI : 10.1016/j.ijsolstr.2009.10.018 | |
来源: Elsevier | |
【 摘 要 】
The failure behaviour of quasi-brittle materials is often time-dependent. This dependence is due to physical processes taking place at the level of the micro-structure. For a rigorous modeling of the time-dependent behaviour of that kind of solids, a two-scale approach is well suited. This paper investigates time-dependent damage which microscopic origin is the subcritical micro-crack growth. We present a two-scale time-dependent damage model completely deduced from small-scale descriptions of subcritical micro-crack propagation, without any macroscopic assumptions. The passage from the micro-scale to the macro-scale is done through an asymptotic homogenization approach. At the micro-scale, the tensile failure due to the subcritical propagation of cracks is the dominant mechanism of creep observed at the macro-scale. We consider microstructures with cracks evolving in different subcritical regimes. We assume a complex propagation law that considers three characteristic regimes of subcritical crack growth, corresponding to different physical processes at the crack tip level. Numerical simulations of constant strain rate, relaxation and creep tests illustrate the ability of the developed model to reproduce different regimes of time-dependent damage response. (C) 2009 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_ijsolstr_2009_10_018.pdf | 992KB | download |