INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES | 卷:48 |
Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm | |
Article | |
Ali, Nizar Bel Hadj1  Rhode-Barbarigos, Landolf1  Smith, Ian F. C.1  | |
[1] ENAC IIC IMAC, Ecole Polytech Fed Lausanne, Appl Comp & Mech Lab, CH-1015 Lausanne, Switzerland | |
关键词: Dynamic relaxation; Tensegrity structures; Clustered actuation; Active control; Deployable structures; | |
DOI : 10.1016/j.ijsolstr.2010.10.029 | |
来源: Elsevier | |
【 摘 要 】
Tensegrities are spatial, reticulated and lightweight structures that are increasingly investigated as structural solutions for active and deployable structures. Tensegrity systems are composed only of axially loaded elements and this provides opportunities for actuation and deployment through changing element lengths. In cable-based actuation strategies, the deficiency of having to control too many cable elements can be overcome by connecting several cables. However, clustering active cables significantly changes the mechanics of classical tensegrity structures. Challenges emerge for structural analysis, control and actuation. In this paper, a modified dynamic relaxation (DR) algorithm is presented for static analysis and form-finding. The method is extended to accommodate clustered tensegrity structures. The applicability of the modified DR to this type of structure is demonstrated. Furthermore, the performance of the proposed method is compared with that of a transient stiffness method. Results obtained from two numerical examples show that the values predicted by the DR method are in a good agreement with those generated by the transient stiffness method. Finally it is shown that the DR method scales up to larger structures more efficiently. (C) 2010 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_ijsolstr_2010_10_029.pdf | 798KB | download |