期刊论文详细信息
JOURNAL OF CONTROLLED RELEASE 卷:287
Nanomedicines for the treatment of hematological malignancies
Review
Deshantri, Anil K.1,2  Moreira, Aida Varela1,3  Ecker, Veronika4  Mandhane, Sanjay N.2  Schiffelers, Raymond M.1  Buchner, Maike4  Fens, Marcel H. A. M.1,3 
[1] Univ Med Ctr Utrecht, Dept Clin Chem & Haematol, Utrecht, Netherlands
[2] Sun Pharma Adv Res Co Ltd, Biol Res Pharmacol Dept, Bombay, Maharashtra, India
[3] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Dept Pharmaceut, Utrecht, Netherlands
[4] Tech Univ Munich, Klinikum Rechts Isar, Inst Clin Chem & Pathobiochem, Munich, Germany
关键词: Hematological malignancies;    Drug delivery;    Nanomedicines;    Liposomes;    Micelles;    Bone marrow microenvironment;   
DOI  :  10.1016/j.jconrel.2018.08.034
来源: Elsevier
PDF
【 摘 要 】

Hematological malignancies (HM) are a collection of malignant transformations originating from cells in the primary or secondary lymphoid organs. Leukemia, lymphoma, and multiple myeloma comprise the three major types of HM. Current treatment consists of bone marrow transplantation, radiotherapy, immunotherapy and chemotherapy. Although, many chemotherapeutic drugs are clinically available for the treatment of HM, the use of these agents is limited due to dose-related toxicity and lack of specificity to tumor tissue. Moreover, the poor pharmacokinetic profile of most of the chemotherapeutics requires high dosage and frequent administration to maintain therapeutic levels at the target site, both increasing adverse effects. This underlines an urgent need for a suitable drug delivery system to improve efficacy, safety, and pharmacokinetic properties of conventional therapeutics. Nanomedicines have proven to enhance these properties for anticancer therapeutics. The most extensively studied nanomedicine systems are lipid-based nanoparticles and polymeric nanoparticles. Typically, nanomedicines are small sub-micron sized particles in the size range of 20-200 nm. The biocompatible and biodegradable nature of nanomedicines makes them attractive vehicles to improve drug delivery. Their small size allows them to extravasate and accumulate at malignant sites passively by means of the enhanced permeability and retention (EPR) effect, resulting from rapid angiogenesis and inflammation. Moreover, the specificity to the target tissue can be further enhanced by surface modification of nanoparticles. This review describes currently available therapies as well as limitations and potential advantages of nanomedicine formulations for treatment of various types of HM. Additionally, recent investigational and approved nanomedicine formulations and their limited applications in HM are discussed.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jconrel_2018_08_034.pdf 10476KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:1次