期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:220
Derivative reproducing properties for kernel methods in learning theory
Article
Zhou, Ding-Xuan
关键词: learning theory;    reproducing kernel Hilbert spaces;    derivative reproducing;    representer theorem;    Hermite learning and semi-supervised learning;   
DOI  :  10.1016/j.cam.2007.08.023
来源: Elsevier
PDF
【 摘 要 】

The regularity of functions from reproducing kernel Hilbert spaces (RKHSs) is studied in the setting of learning theory. We provide a reproducing property for partial derivatives up to order s when the Mercer kernel is C-2s. For such a kernel on a general domain we show that the RKHS can be embedded into the function space C-s. These observations yield a representer theorem for regularized learning algorithms involving data for function values and gradients. Examples of Hermite learning and semi-supervised learning penalized by gradients on data are considered. (c) 2007 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2007_08_023.pdf 176KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次