期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:345
Accelerating the Induced Dimension Reduction method using spectral information
Article
Astudillo, R.1  de Gier, J. M.2  van Gijzen, M. B.1 
[1] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[2] TNO Tech Sci, Distributed Sensor Syst, Oude Waalsdorperweg 63, NL-2597 AK The Hague, Netherlands
关键词: Induced Dimension Reduction method;    System of linear equations;    Sequence of systems of linear equation;    Eigenvalues and eigenvectors;   
DOI  :  10.1016/j.cam.2018.06.014
来源: Elsevier
PDF
【 摘 要 】

The Induced Dimension Reduction method (IDR(s)) (Sonneveld and van Gijzen, 2008) is a short-recurrences Krylov method to solve systems of linear equations. In this work, we accelerate this method using spectral information. We construct a Hessenberg relation from the IDR(s) residual recurrences formulas, from which we approximate the eigenvalues and eigenvectors. Using the Ritz values, we propose a self-contained variant of the Ritz-IDR(s) method (Simoncini and Szyld, 2010) for solving a system of linear equations. In addition, the Ritz vectors are used to speed-up IDR(s) for the solution of sequence of systems of linear equations. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2018_06_014.pdf 802KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次