期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:230
A globally convergent BFGS method with nonmonotone line search for non-convex minimization
Article
Xiao, Yunhai1,2  Sun, Huijuan2  Wang, Zhiguo2 
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Henan Univ, Inst Appl Math, Coll Math & Informat Sci, Kaifeng 475004, Peoples R China
关键词: Non-convex minimization;    Secant equation;    BFGS method;    Nonmonotone line search;    Global convergence;   
DOI  :  10.1016/j.cam.2008.10.065
来源: Elsevier
PDF
【 摘 要 】

In this paper, we propose a modified BFGS (Broyden-Fletcher-Goldfarb-Shanno) method with nommonotone line search for unconstrained optimization. Under some mild conditions, we show that the method is globally convergent without a convexity assumption on the objective function. We also report some preliminary numerical results to show the efficiency of the proposed method. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2008_10_065.pdf 626KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次