JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:172 |
Interpolating discrete advection-diffusion propagators at Leja sequences | |
Article; Proceedings Paper | |
Caliari, M ; Vianello, M ; Bergamaschi, L | |
关键词: exponential operator; advection-diffusion problem; sparse matrix; Leja sequence; polynomial interpolation; | |
DOI : 10.1016/j.cam.2003.11.015 | |
来源: Elsevier | |
【 摘 要 】
We propose and analyze the ReLPM (Real Leja Points Method) for evaluating the propagator phi(DeltatB)nu via matrix interpolation polynomials at spectral Leja sequences. Here B is the large, sparse, nonsymmetric matrix arising from stable 2D or 3D finite-difference discretization of linear advection-diffusion equations, and phi(z) is the entire function phi(z) = (e(z) - 1)/z. The corresponding stiff differential system y(t) = By(t) + g,y(0) =y(0), is solved by the exact time marching scheme y(i+1) = y(i) + Deltat(i)phi(Deltat(i)B)(By(i) + g), i = 0, 1,..., where the time-step is controlled simply via the variation percentage of the solution, and can be large. Numerical tests show substantial speed-ups (up to one order of magnitude) with respect to a classical variable step-size Crank-Nicolson solver. (C) 2004 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2003_11_015.pdf | 576KB | download |