期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:388
Adaptive C0 interior penalty methods for Hamilton-Jacobi-Bellman equations with Cordes coefficients
Article
Brenner, Susanne C.1,2  Kawecki, Ellya L.3 
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] UCL, Dept Math, London WC1H 0AY, England
关键词: Finite element methods;    Interior penalty methods;    Partial differential equations;    A posteriori estimates;    Mesh refinement;   
DOI  :  10.1016/j.cam.2020.113241
来源: Elsevier
PDF
【 摘 要 】

In this paper we conduct a priori and a posteriori error analysis of the C-0 interior penalty method for Hamilton-Jacobi-Bellman equations, with coefficients that satisfy the Cordes condition. These estimates show the quasi-optimality of the method, and provide one with an adaptive finite element method. In accordance with the proven regularity theory, we only assume that the solution of the Hamilton-Jacobi-Bellman equation belongs to H-2. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_113241.pdf 1799KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次