期刊论文详细信息
| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:388 |
| Adaptive C0 interior penalty methods for Hamilton-Jacobi-Bellman equations with Cordes coefficients | |
| Article | |
| Brenner, Susanne C.1,2  Kawecki, Ellya L.3  | |
| [1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA | |
| [2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA | |
| [3] UCL, Dept Math, London WC1H 0AY, England | |
| 关键词: Finite element methods; Interior penalty methods; Partial differential equations; A posteriori estimates; Mesh refinement; | |
| DOI : 10.1016/j.cam.2020.113241 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper we conduct a priori and a posteriori error analysis of the C-0 interior penalty method for Hamilton-Jacobi-Bellman equations, with coefficients that satisfy the Cordes condition. These estimates show the quasi-optimality of the method, and provide one with an adaptive finite element method. In accordance with the proven regularity theory, we only assume that the solution of the Hamilton-Jacobi-Bellman equation belongs to H-2. (C) 2020 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_cam_2020_113241.pdf | 1799KB |
PDF