期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:388
Computing the CEV option pricing formula using the semiclassical approximation of path integral
Article
Araneda, Axel A.1  Villena, Marcelo J.2 
[1] Masaryk Univ, Fac Econ & Adm, Inst Financial Complex Syst, Lipova 41a, Brno 60200, Czech Republic
[2] Univ Adolfo Ibanez, Fac Sci & Engn, Avda Diagonal Torres 2640, Santiago 7941169, Chile
关键词: Option pricing;    Constant elasticity of variance;    Path integral;    Semiclassical approximation;    Numerical methods;   
DOI  :  10.1016/j.cam.2020.113244
来源: Elsevier
PDF
【 摘 要 】

The CEV model allows volatility to change with the underlying price, capturing a basic empirical regularity very relevant for option pricing, such as the volatility smile. Nevertheless, the standard CEV solution, using the non-central chi-square approach, still presents high computational times. In this paper, the CEV option pricing formula is computed using the semiclassical approximation of Feynman's path integral. Our simulations show that the method is quite efficient and accurate compared to the standard CEV solution considering the pricing of European call options. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_113244.pdf 972KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次