期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:236
Adaptive finite element methods for elliptic equations over hierarchical T-meshes
Article; Proceedings Paper
Tian, Li1  Chen, Falai2  Du, Qiang1 
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词: Numerical PDEs;    Adaptive finite element;    Adaptive PHT-splines;    A posteriori error estimations;    Hierarchical T-meshes;   
DOI  :  10.1016/j.cam.2011.05.016
来源: Elsevier
PDF
【 摘 要 】

Isogeometric analysis using NURBS (Non-Uniform Rational B-Splines) as basis functions gives accurate representation of the geometry and the solution but it is not well suited for local refinement. In this paper, we use the polynomial splines over hierarchical T-meshes (PHT-splines) to construct basis functions which not only share the nice smoothness properties as the B-splines, but also allow us to effectively refine meshes locally. We develop a residual-based a posteriori error estimate for the finite element discretization of elliptic equations using PHT-splines basis functions and study their approximation properties. In addition, we conduct numerical experiments to verify the theory and to demonstrate the effectiveness of the error estimate and the high order approximations provided by the numerical solution. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2011_05_016.pdf 1141KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次