期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:393
Two regularized energy-preserving finite difference methods for the logarithmic Klein-Gordon equation
Article
Yan, Jingye1,2  Qian, Xu1  Zhang, Hong1  Song, Songhe1,3 
[1] Natl Univ Def Technol, Coll Arts & Sci, Dept Math, Changsha 410073, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
关键词: Logarithmic Klein-Gordon equation;    Regularized logarithmic Klein-Gordon equation;    Finite difference method;    Error estimate;    Convergence order;    Energy-preserving;   
DOI  :  10.1016/j.cam.2021.113478
来源: Elsevier
PDF
【 摘 要 】

We present and analyze two regularized finite difference methods which preserve energy of the logarithmic Klein-Gordon equation (LogKGE). In order to avoid singularity caused by the logarithmic nonlinearity of the LogKGE, we propose a regularized logarithmic Klein-Gordon equation (RLogKGE) with a small regulation parameter 0 < epsilon << 1 to approximate the LogKGE with the convergence order O(epsilon). To derive the error bound of the two schemes, we combine the energy method, the inverse inequality, with the cut-off technique of the nonlinearity. And we obtain the error estimate at O(h(2) + tau(2)/epsilon(2)) for the two schemes with the mesh size h, the time step tau and the parameter epsilon. Numerical results are reported to support our conclusions. (c) 2021 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2021_113478.pdf 2002KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次