期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:238
A convex relaxation method for computing exact global solutions for multiplicative noise removal
Article
Liu, Chunxiao2  Zhu, Shengfeng1 
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
关键词: Multiplicative noise;    Image denoising;    Total variation;    Global minimization;    Primal-dual;   
DOI  :  10.1016/j.cam.2012.08.019
来源: Elsevier
PDF
【 摘 要 】

We propose a convex relaxation technique for computing global solutions for the nonconvex multiplicative noise model. The method is based on functional lifting by introducing an additional dimension. We employ a primal-dual-based gradient-type algorithm in numerical implementations to overcome the nondifferentiability of the total variation term. Numerical results show that our algorithm is highly efficient. Furthermore, global solutions of the original model can be obtained with no dependence on the initial guess. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2012_08_019.pdf 3044KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:1次