期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:353
The existence of explicit symplectic ARKN methods with several stages and algebraic order greater than two
Article
Li, Jiyong1,2  Shi, Wei3  Wu, Xinyuan4,5 
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050024, Hebei, Peoples R China
[3] Nanjing Tech Univ, Coll Math Sci, Nanjing 211816, Jiangsu, Peoples R China
[4] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[5] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词: Adapted Runge-Kutta-Nystrom methods;    Oscillatory problems;    Hamiltonian systems;    Symplectic conditions;    Main frequency;   
DOI  :  10.1016/j.cam.2018.12.026
来源: Elsevier
PDF
【 摘 要 】

Adapted Runge-Kutta-Nystrom (ARKN) methods for solving the oscillatory problem q ''(t)+w(2)q(t) = f(q(t)) have been investigated by several authors. Recently, Shi et al. [Comput. Phys. Comm. 183 (2012) 1250-1258] conclude that there exist only one-stage explicit symplectic ARKN methods and the algebraic order cannot exceed two. In this paper we investigate the symplecticity of ARKN methods and present that there exist explicit symplectic ARKN methods with several stages and algebraic order greater than two. Some numerical experiments are provided to confirm the theoretical expectations. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2018_12_026.pdf 305KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次