期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:353
The boundary method for semi-discrete optimal transport partitions and Wasserstein distance computation
Article
Dieci, Luca1  Walsh, J. D., III2 
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Naval Surface Warfare Ctr, Panama City Div X24, 110 Vernon Ave, Panama City, FL 32407 USA
关键词: Optimal transport;    Monge-Kantorovich;    Semi-discrete;    Wasserstein distance;    Boundary method;   
DOI  :  10.1016/j.cam.2018.12.034
来源: Elsevier
PDF
【 摘 要 】

We introduce a new technique, which we call the boundary method, for solving semi discrete optimal transport problems with a wide range of cost functions. The boundary method reduces the effective dimension of the problem, thus improving complexity. For cost functions equal to a p-norm with p is an element of (1, infinity), we provide mathematical justification, convergence analysis, and algorithmic development. Our testing supports the boundary method with these p-norms, as well as other, more general cost functions. Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2018_12_034.pdf 1296KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次