期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:354
Generalized trigonometric interpolation
Article; Proceedings Paper
Navascues, M. A.1  Jha, Sangita2  Chand, A. K. B.2  Sebastian, M. V.3 
[1] Univ Zaragoza, Dept Matemat Aplicada, Escuela Ingn & Arquitectura, Zaragoza 500018, Spain
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[3] Acad Gen Mil, Ctr Univ Def, Zaragoza 50090, Spain
关键词: Fractal interpolation;    Trigonometric interpolation;    Smoothing;    Curve fitting;   
DOI  :  10.1016/j.cam.2018.08.003
来源: Elsevier
PDF
【 摘 要 】

This article proposes a generalization of the Fourier interpolation formula, where a wider range of the basic trigonometric functions is considered. The extension of the procedure is done in two ways: adding an exponent to the maps involved, and considering a family of fractal functions that contains the standard case. The studied interpolation converges for every continuous function, for a large range of the nodal mappings chosen. The error of interpolation is bounded in two ways: one theorem studies the convergence for Holder continuous functions and other develops the case of merely continuous maps. The stability of the approximation procedure is proved as well. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2018_08_003.pdf 436KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次