期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:372
A symmetric weak Galerkin method for solving non-divergence form elliptic equations
Article
Zhai, Qilong1  Tian, Tian2  Zhang, Ran3  Zhang, Shangyou4 
[1] Peking Univ, Dept Math, Changchun, Peoples R China
[2] Peking Univ, Dept Math, Beijing, Peoples R China
[3] Jilin Univ, Dept Math, Changchun, Peoples R China
[4] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词: Weak Galerkin finite element method;    Triangular grid;    Elliptic equation;    Non-divergence form;   
DOI  :  10.1016/j.cam.2019.112693
来源: Elsevier
PDF
【 摘 要 】

We reformulate the second order non-divergence form elliptic equations in a symmetric variation form, i.e., a least-squares form. We design a weak Galerkin finite element method for this high-regularity formulation. The optimal order of convergence is proved. Numerical results verify the theory. In addition, numerical results, compared to the existing weak Galerkin method for the non-symmetric form, and the new methods show advantage on the accuracy and the degree of freedoms. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_112693.pdf 346KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次