| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:235 |
| The spectrum of eigenparameter-dependent discrete Sturm-Liouville equations | |
| Article; Proceedings Paper | |
| Bairamov, Elgiz1  Aygar, Yelda1  Koprubasi, Turhan1  | |
| [1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey | |
| 关键词: Discrete equations; Spectral analysis; Eigenvalues; Spectral singularities; | |
| DOI : 10.1016/j.cam.2009.12.037 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let us consider the boundary value problem (BVP) for the discrete Sturm-Liouville equation a(n-1)y(n-1) + b(n)y(n) + a(n)y(n+1) = lambda y(n), n is an element of N, (0.1) (gamma(0) + gamma(1)lambda)y(1) + (beta(0) + beta(1)lambda)y(0) = 0, (0.2) where (a(n)) and (b(n)), n is an element of N are complex sequences, gamma(i), beta(i) is an element of C, i = 0, 1, and lambda is a eigenparameter. Discussing the point spectrum, we prove that the BVP (0.1), (0.2) has a finite number of eigenvalues and spectral singularities with a finite multiplicities, if sup(n is an element of N) [exp(epsilon n(delta)) (vertical bar 1 - a(n)vertical bar + vertical bar b(n)vertical bar)] < infinity, for some epsilon > 0 and 1/2 <= delta <= 1. (C) 2010 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_cam_2009_12_037.pdf | 226KB |
PDF