期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:234
Superconvergent biquadratic finite volume element method for two-dimensional Poisson's equations
Article
Wang, Tongke1  Gu, Yuesheng2 
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Henan Inst Sci & Technol, Coll Informat Engn, Xinxiang, Henan, Peoples R China
关键词: Poisson's equation;    Biquadratic finite volume element method;    Alternating direction method;    Optimal stress point;    Error estimate;    Superconvergence;   
DOI  :  10.1016/j.cam.2009.12.036
来源: Elsevier
PDF
【 摘 要 】

In this paper, a kind of biquadratic finite volume element method is presented for two-dimensional Poisson's equations by restricting the optimal stress points of biquadratic interpolation as the vertices of control volumes. The method can be effectively implemented by alternating direction technique. It is proved that the method has optimal energy norm error estimates. The superconvergence of numerical gradients at optimal stress points is discussed and it is proved that the method has also superconvergence displacement at nodal points by a modified dual argument technique. Finally, a numerical example verifies the theoretical results and illustrates the effectiveness of the method. (C) 2009 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2009_12_036.pdf 817KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次