期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:364
A robust solver for a second order mixed finite element method for the Cahn-Hilliard equation
Article
Brenner, Susanne C.1,2  Diegel, Amanda E.1,2  Sung, Li-Yeng1,2 
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
关键词: Cahn-Hilliard equation;    Convex Splitting;    Mixed finite element methods;    MINRES;    Block diagonal preconditioner;    Multigrid;   
DOI  :  10.1016/j.cam.2019.06.038
来源: Elsevier
PDF
【 摘 要 】

We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spatial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_06_038.pdf 1042KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次