期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:241
An adaptive splitting approach for the quenching solution of reaction-diffusion equations over nonuniform grids
Article
Beauregard, Matthew A.1 
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词: Reaction-diffusion equations;    Quenching singularity;    Degeneracy;    Splitting method;    Adaptation;    Nonuniform grids;   
DOI  :  10.1016/j.cam.2012.10.005
来源: Elsevier
PDF
【 摘 要 】

The numerical solution of a nonlinear degenerate reaction-diffusion equation of the quenching type is investigated. While spatial derivatives are discretized over symmetric nonuniform meshes, a Peaceman-Rachford splitting method is employed to advance solutions of the semidiscretized system. The temporal step is determined adaptively through a suitable arc-length monitor function. A criterion is derived to ensure that the numerical solution acquired preserves correctly the positivity and monotonicity of the analytical solution. Weak stability is proven in a von Neumann sense via the infinity-norm. Computational examples are presented to illustrate our results. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2012_10_005.pdf 830KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次