期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:136
Time-dependent variational inequalities for viscoelastic contact problems
Article
Han, WM ; Sofonea, M
关键词: variational inequality;    viscoelastic material;    contact;    normal compliance;    friction;    finite-element method;    semi-discrete scheme;    fully discrete scheme;    error estimates;   
DOI  :  10.1016/S0377-0427(00)00627-0
来源: Elsevier
PDF
【 摘 要 】

We consider a class of abstract evolutionary variational inequalities arising in the study of contact problems for viscoelastic materials. We prove an existence and uniqueness result, using standard arguments of time-dependent elliptic variational inequalities and Banach's fixed point theorem. We then consider numerical approximations of the problem. We use the finite element method to discretize the spatial domain and we introduce spatially semi-discrete and fully discrete schemes. For both schemes, we show the existence of a unique solution, and derive error estimates. Finally, we apply the abstract results to the analysis and numerical approximations of a viscoelastic contact problem with normal compliance and friction. (C) 2001 Elsevier Science B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0377-0427(00)00627-0.pdf 163KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次