期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:175
Bayesian analysis of binary sequences
Article
Torney, DC
关键词: concave;    convex;    cut polytope;    geometric probability;    Laplace approximation;    machine learning;    moments;    nonlinear optimization;    polytope;    posterior likelihoods;    probability monomials;    quadratic program;    semidefinite;   
DOI  :  10.1016/j.cam.2004.05.010
来源: Elsevier
PDF
【 摘 要 】

This manuscript details Bayesian methodology for learning by example, with binary n-sequences encoding the objects under consideration. Priors prove influential; conformable priors are described. Laplace approximation of Bayes integrals yields posterior likelihoods for all n-sequences. This involves the optimization of a definite function over a convex domain-efficiently effectuated by the sequential application of the quadratic program.. (C) 2004 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2004_05_010.pdf 224KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次