期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:233
Spectral properties of primal-based penalty preconditioners for saddle point problems
Article
Shen, Shu-Qian1,2  Huang, Ting-Zhu2  Zhong, Er-Jie2 
[1] China Univ Petr, Sch Math & Computat Sci, Dongying 257061, Shandong, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
关键词: Saddle point problem;    Block preconditioner;    Eigenvalue;    Krylov subspace method;   
DOI  :  10.1016/j.cam.2009.10.009
来源: Elsevier
PDF
【 摘 要 】

For large and sparse saddle point linear systems, this paper gives further spectral properties of the primal-based penalty preconditioners introduced in [C.R. Dohrmann, R.B. Lehoucq, A primal-based penalty preconditioner for elliptic saddle point systems, SIAM J. Numer. Anal. 44 (2006) 270-282]. The regions containing the real and non-real eigenvalues of the preconditioned matrix are obtained. The model of the Stokes problem is supplemented to illustrate the theoretical results and to test the quality of the primal-based penalty preconditioner. (C) 2009 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2009_10_009.pdf 603KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次