JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:233 |
Spectral properties of primal-based penalty preconditioners for saddle point problems | |
Article | |
Shen, Shu-Qian1,2  Huang, Ting-Zhu2  Zhong, Er-Jie2  | |
[1] China Univ Petr, Sch Math & Computat Sci, Dongying 257061, Shandong, Peoples R China | |
[2] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China | |
关键词: Saddle point problem; Block preconditioner; Eigenvalue; Krylov subspace method; | |
DOI : 10.1016/j.cam.2009.10.009 | |
来源: Elsevier | |
【 摘 要 】
For large and sparse saddle point linear systems, this paper gives further spectral properties of the primal-based penalty preconditioners introduced in [C.R. Dohrmann, R.B. Lehoucq, A primal-based penalty preconditioner for elliptic saddle point systems, SIAM J. Numer. Anal. 44 (2006) 270-282]. The regions containing the real and non-real eigenvalues of the preconditioned matrix are obtained. The model of the Stokes problem is supplemented to illustrate the theoretical results and to test the quality of the primal-based penalty preconditioner. (C) 2009 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2009_10_009.pdf | 603KB | download |