期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:254
Mathematical models of flageolet harmonics on stringed instruments
Article
Fiedler, Bernold
关键词: Flageolet;    Violin;    Harmonics;    Wave equation;    Fourth order;    Spectra;   
DOI  :  10.1016/j.cam.2012.12.009
来源: Elsevier
PDF
【 摘 要 】

Flageolet is a common technique to elicit harmonics on stringed instruments like guitars, pianos, and the violin family: the bowed or plucked string is subdivided by a slight touch of the finger. The paper discusses appropriate linear wave equations which model the flageolet phenomenon. The standard second order wave equation fails, because the resulting Dirichlet boundary condition at the finger uncouples the two parts of the string and produces tones different from the flageolet. We include and discuss fourth order corrections, due to string stiffness, as a possible source for the flageolet phenomenon. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2012_12_009.pdf 489KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次