期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:263
Linear/linear rational spline collocation for linear boundary value problems
Article
Ideon, Erge1  Oja, Peeter2 
[1] Estonian Univ Life Sci, Inst Technol, EE-51014 Tartu, Estonia
[2] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词: Boundary;    value problems;    Collocation Rational spline;    Convergence;   
DOI  :  10.1016/j.cam.2013.11.028
来源: Elsevier
PDF
【 摘 要 】

We investigate the collocation method with linear/linear rational spline S of smoothness class C-1 for the numerical solution of two-point boundary value problems if the solution y of the boundary value problem is a strictly monotone function. We show that for the linear/linear rational splines on a uniform mesh it holds vertical bar vertical bar S '' - y ''vertical bar vertical bar infinity = O(h). Established bound of error for the collocation method gives a dependence on the solution of the boundary value problem and its coefficients. We prove also convergence rates vertical bar vertical bar S '' - y ''vertical bar vertical bar infinity = O(h(2)), vertical bar vertical bar S '' - y ''vertical bar vertical bar infinity = O(h) and the superconvergence of order h(2) for the second derivative of S in certain points. Numerical examples support the obtained theoretical results. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2013_11_028.pdf 434KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次