期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:154
Uniform Powell-Sabin spline wavelets
Article
Windmolders, J ; Vanraes, E ; Dierckx, P ; Bultheel, A
关键词: wavelets;    lifting;    B-splines;    Powell-Sabin splines;    subdivision;   
DOI  :  10.1016/S0377-0427(02)00817-8
来源: Elsevier
PDF
【 摘 要 】

This paper discusses how the subdivision scheme for uniform Powell-Sabin spline surfaces makes it possible to place those surfaces in a multiresolution context. We first show that the basis functions are translates and dilates of one vector of scaling functions. This defines a sequence of nested spaces. We then use the subdivision scheme as the prediction step in the lifting scheme and add an update step to construct wavelets that describe a sequence of complement spaces. Finally, as an example application, we use the new wavelet transform to reduce noise on a uniform Powell-Sabin spline surface. (C) 2003 Elsevier Science B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0377-0427(02)00817-8.pdf 553KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次