期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:262
A class of quadrature-based moment-closure methods with application to the Vlasov-Poisson-Fokker-Planck system in the high-field limit
Article; Proceedings Paper
Cheng, Yongtao1  Rossmanith, James A.2 
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词: Asymptotic-preserving;    Discontinuous Galerkin;    Vlasov-Poisson;    Fokker-Planck;    Moment-closure;    Plasma physics;   
DOI  :  10.1016/j.cam.2013.10.041
来源: Elsevier
PDF
【 摘 要 】

Quadrature-based moment-closure methods are a class of approximations that replace high-dimensional kinetic descriptions with lower-dimensional fluid models. In this work we investigate some of the properties of a sub-class of these methods based on bidelta, bi-Gaussian, and bi-B-spline representations. We develop a high-order discontinuous Galerkin (DG) scheme to solve the resulting fluid systems. Finally, via this high-order DG scheme and Strang operator splitting to handle the collision term, we simulate the fluid-closure models in the context of the Vlasov-Poisson-Fokker-Planck system in the high-field limit. We demonstrate numerically that the proposed scheme is asymptotic-preserving in the high-field limit. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2013_10_041.pdf 3229KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次