期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:364
An efficient numerical solver for anisotropic subdiffusion problems
Article
Tan, Jinying1  Liu, Jiangguo2 
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
关键词: Anisotropy;    Chebyshev differentiation matrices;    Spectral collocation;    Subdiffusion;    Time-fractional derivatives;   
DOI  :  10.1016/j.cam.2019.06.034
来源: Elsevier
PDF
【 摘 要 】

This paper presents an efficient and robust numerical solver for anisotropic subdiffusion problems, which are important but not addressed directly in the literature. The Chebyshev spectral collocation method is utilized for discretization of the spatial Laplacian, whereas a linear interpolation is used for discretizing the fractional order Caputo temporal derivative. This solver is stable and catches the main features of subdiffusion. Numerical experiments are presented to demonstrate the accuracy and efficiency of this new solver. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_06_034.pdf 2992KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次