期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:372
Preconditioners for rank deficient least squares problems
Article
Cerdan, J.1  Guerrero, D.2  Marin, J.1  Mas, J.1 
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46022 Valencia, Spain
[2] Univ Pedag Nacl Francisco Morazan, Dept Ciencias Matemat, Tegucigalpa, Honduras
关键词: Iterative methods;    Rank deficient;    Sparse linear systems;    Preconditioning;    Linear least squares problems;   
DOI  :  10.1016/j.cam.2019.112621
来源: Elsevier
PDF
【 摘 要 】

In this paper we present a method for computing sparse preconditioners for iteratively solving rank deficient least squares problems (LS) by the LSMR method. The main idea of the method proposed is to update an incomplete factorization computed for a regularized problem to recover the solution of the original one. The numerical experiments for a wide set of matrices arising from different science and engineering applications show that the preconditioner proposed, in most cases, can be successfully applied to accelerate the convergence of the iterative Krylov subspace method. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_112621.pdf 965KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次