期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:235
The spectral properties of the preconditioned matrix for nonsymmetric saddle point problems
Article
Li, Jian-Lei1  Huang, Ting-Zhu1  Li, Liang1 
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词: Preconditioner;    Matrix splitting;    Eigenvalue analysis;    Nonsymmetric saddle point problems;    Spectral;   
DOI  :  10.1016/j.cam.2010.06.001
来源: Elsevier
PDF
【 摘 要 】

In this paper, on the basis of matrix splitting, two preconditioners are proposed and analyzed, for nonsymmetric saddle point problems. The spectral property of the preconditioned matrix is studied in detail. When the iteration parameter becomes small enough, the eigenvalues of the preconditioned matrices will gather into two clusters one is near (0, 0) and the other is near (2, 0)-for the PPSS preconditioner no matter whether A is Hermitian or non-Hermitian and for the PHSS preconditioner when A is a Hermitian or real normal matrix. Numerical experiments are given, to illustrate the performances of the two preconditioners. (C) 2010 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2010_06_001.pdf 2269KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:2次