JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:236 |
Option pricing with a direct adaptive sparse grid approach | |
Article; Proceedings Paper | |
Bungartz, Hans-Joachim1  Heinecke, Alexander1  Pflueger, Dirk1  Schraufstetter, Stefanie1  | |
[1] Tech Univ Munich, Inst Informat, D-85748 Garching, Germany | |
关键词: Black-Scholes equation; Option pricing; Sparse grids; Finite elements; Adaptivity; | |
DOI : 10.1016/j.cam.2011.09.024 | |
来源: Elsevier | |
【 摘 要 】
We present an adaptive sparse grid algorithm for the solution of the Black-Scholes equation for option pricing, using the finite element method. Sparse grids enable us to deal with higher-dimensional problems better than full grids. In contrast to common approaches that are based on the combination technique, which combines different solutions on anisotropic coarse full grids, the direct sparse grid approach allows for local adaptive refinement. When dealing with non-smooth payoff functions, this reduces the computational effort significantly. In this paper, we introduce the spatially adaptive discretization of the Black-Scholes equation with sparse grids and describe the algorithmic structure of the numerical solver. We present several strategies for adaptive refinement, evaluate them for different dimensionalities, and demonstrate their performance showing numerical results. (c) 2011 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2011_09_024.pdf | 788KB | download |