期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:355
Dispersion optimized quadratures for isogeometric analysis
Article
Calo, Victor1,2,3  Deng, Quanling1,2  Puzyrev, Vladimir1,2 
[1] Curtin Univ, Appl Geol, Kent St, Perth, WA 6102, Australia
[2] Curtin Univ, Curtin Inst Computat, Kent St, Perth, WA 6102, Australia
[3] CSIRO, Mineral Resources, Perth, WA 6152, Australia
关键词: Isogeometric analysis;    Quadrature rule;    Dispersion analysis;    Spectrum analysis;   
DOI  :  10.1016/j.cam.2019.01.025
来源: Elsevier
PDF
【 摘 要 】

We develop and analyze quadrature blending schemes that minimize the dispersion error of isogeometric analysis up to polynomial order seven with maximum continuity in the span. The schemes yield two extra orders of convergence (superconvergence) on the eigenvalue errors, while the eigenfunction errors are of optimal convergence order. Both dispersion and spectrum analysis are unified in the form of a Taylor expansion for eigenvalue errors. The resulting schemes increase the accuracy and robustness of isogeometric analysis for wave propagation as well as the differential eigenvalue problems. We also derive an a posteriori error estimator for the eigenvalue error based on the superconvergence result. We verify with numerical examples the analysis of the performance of the proposed schemes. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_01_025.pdf 1337KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次