JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:228 |
On the semilocal convergence of inexact Newton methods in Banach spaces | |
Article | |
Argyros, Ioannis K. | |
关键词: Inexact Newton method; Banach space; Majorizing sequence; Residual; Semilocal convergence; Lipschitz condition; Center-Lipschitz condition; | |
DOI : 10.1016/j.cam.2008.10.005 | |
来源: Elsevier | |
【 摘 要 】
We provide two types of semilocal convergence theorems for approximating a Solution of an equation in a Banach space setting using an inexact Newton method [I.K Argyros, Relation between forcing sequences and inexact Newton iterates in Banach spaces, Computing 63 (2) (1999) 134-144; I.K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Frechet-derivative, Comput. Appl. Math. 37 (7) (1999) 109-115; I.K. Argyros, Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77-80; I.K. Argyros, Local convergence of inexact Newton-like iterative methods and applications, Comput. Math. Appl. 39 (2000) 69-75: I.K. Argyros, Computational Theory of Iterative Methods, in: C.K. Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231-242]. By using more precise majorizing sequences than before [X Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231-242; Z.D. Huang, On the convergence of inexact Newton method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393-396; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982: X.H. Wang, Convergence on the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552-555; T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3)(1984) 583-590], we provide (under the same computational cost) under the same or weaker hypotheses: finer error bounds on the distances involved; an at least as precise information on the location of the solution. Moreover if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. (c) 2008 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2008_10_005.pdf | 489KB | download |