期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:234
Optimized higher order time discretization of second order hyperbolic problems: Construction and numerical study
Article; Proceedings Paper
Joly, P.1  Rodriguez, J.1,2 
[1] INRIA Rocquencourt, ENSTA, INRIA, CNRS,Team Project Poems,UMR 2706, Le Chesnay, France
[2] USC, Dept Matemat Aplicada, Santiago De Compostela 15782, A Coruna, Spain
关键词: Time stepping;    High order methods;    Wave propagation problems;    Second order hyperbolic problems;    CLF condition;    Modified equation method;   
DOI  :  10.1016/j.cam.2009.08.046
来源: Elsevier
PDF
【 摘 要 】

We investigate explicit higher order time discretizations of linear second order hyperbolic problems. We study the even order (2m) schemes obtained by the modified equation method. We show that the corresponding CFL upper bound for the time step remains bounded when the order of the scheme increases. We propose variants of these schemes constructed to optimize the CFL condition. The corresponding optimization problem is analyzed in detail. The optimal schemes are validated through various numerical results. (C) 2010 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2009_08_046.pdf 578KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次