期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:273
Defect-based local error estimators for splitting methods, with application to Schrodinger equations, Part III: The nonlinear case
Article
Auzinger, Winfried1  Hofstaetter, Harald1  Koch, Othmar1  Thalhammer, Mechthild2 
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Leopold Franzens Univ Innsbruck, Inst Math, A-6020 Innsbruck, Austria
关键词: Nonlinear evolution equations;    Time-dependent nonlinear Schrodinger equations;    Exponential operator splitting methods;    A priori local error analysis;    A posteriori local error analysis;   
DOI  :  10.1016/j.cam.2014.06.012
来源: Elsevier
PDF
【 摘 要 】

The present work is concerned with the efficient time integration of nonlinear evolution equations by exponential operator splitting methods. Defect-based local error estimators serving as a reliable basis for adaptive stepsize control are constructed and analyzed. In the context of time-dependent nonlinear Schrodinger equations, asymptotical correctness of the local error estimators associated with the first-order Lie-Trotter and second-order Strang splitting methods is proven. Numerical examples confirm the theoretical results and illustrate the performance of adaptive stepsize control. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2014_06_012.pdf 519KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次