期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:340
Generalized multiscale discontinuous Galerkin method for solving the heat problem with phase change
Article
Stepanov, Sergei1  Vasilyeva, Maria1  Vasil'ev, Vasiliy, I1 
[1] North Eastern Fed Univ, Yakutsk, Russia
关键词: Multiscale method;    Discontinuous Galerkin;    GMsFEM;    Heat transfer;    Heterogeneous media;    Stefan problem;   
DOI  :  10.1016/j.cam.2017.12.004
来源: Elsevier
PDF
【 摘 要 】

In this work, we consider a numerical solution of a heat transfer problem with phase change in heterogeneous domains. For simulation of heat transfer processes with phase transitions, we use a classic Stefan model. Computational implementation is based on generalized multiscale discontinuous Galerkin method (GMsDGM). In this method the interior penalty discontinuous Galerkin method is used for the global coupling on a coarse grid. The main idea of these methods is to construct a small dimensional local solution space that can provide an efficient calculation on coarse grid level. We present numerical results for different geometries to demonstrate an accuracy of the method. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2017_12_004.pdf 827KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次