| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:57 |
| PAINLEVE-TYPE DIFFERENTIAL-EQUATIONS FOR THE RECURRENCE COEFFICIENTS OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS | |
| Article; Proceedings Paper | |
| MAGNUS, AP | |
| 关键词: ORTHOGONAL POLYNOMIALS; DIFFERENTIAL EQUATIONS; PAINLEVE EQUATIONS; | |
| DOI : 10.1016/0377-0427(93)E0247-J | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Recurrence coefficients of semi-classical orthogonal polynomials (orthogonal polynomials related to a weight function w such that w'/w is a rational function) are shown to be solutions of nonlinear differential equations with respect to a well-chosen parameter, according to principles established by D. Chudnovsky and G. Chudnovsky. Examples are given. For instance, the recurrence coefficients in a(n+1)p(n+1)(x)= xp(n)(x) - a(n)p(n-1)(x) of the orthogonal polynomials related to the weight exp(- x(4)/4 - tx(2)) on R satisfy 4a(n)(3)a(n) = (3a(n)(4) + 2ta(n)(2) - n)(a(n)(4) + 2ta(n)(3) + n), and a(n)(2) satisfies a Painleve: P-IV equation.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_0377-0427(93)E0247-J.pdf | 1332KB |
PDF