期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:57
PAINLEVE-TYPE DIFFERENTIAL-EQUATIONS FOR THE RECURRENCE COEFFICIENTS OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS
Article; Proceedings Paper
MAGNUS, AP
关键词: ORTHOGONAL POLYNOMIALS;    DIFFERENTIAL EQUATIONS;    PAINLEVE EQUATIONS;   
DOI  :  10.1016/0377-0427(93)E0247-J
来源: Elsevier
PDF
【 摘 要 】

Recurrence coefficients of semi-classical orthogonal polynomials (orthogonal polynomials related to a weight function w such that w'/w is a rational function) are shown to be solutions of nonlinear differential equations with respect to a well-chosen parameter, according to principles established by D. Chudnovsky and G. Chudnovsky. Examples are given. For instance, the recurrence coefficients in a(n+1)p(n+1)(x)= xp(n)(x) - a(n)p(n-1)(x) of the orthogonal polynomials related to the weight exp(- x(4)/4 - tx(2)) on R satisfy 4a(n)(3)a(n) = (3a(n)(4) + 2ta(n)(2) - n)(a(n)(4) + 2ta(n)(3) + n), and a(n)(2) satisfies a Painleve: P-IV equation.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_0377-0427(93)E0247-J.pdf 1332KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次