JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:85 |
Index integral transformations of Titchmarsh type | |
Article | |
Yakubovich, SB | |
关键词: the Titchmarsh transform; the Kontorovich-Lebedev transform; the Mellin transform; Bessel functions; Lommel functions; | |
DOI : 10.1016/S0377-0427(97)00143-X | |
来源: Elsevier | |
【 摘 要 】
In 1946 Titchmarsh [4] introduced the integral transformation g(tau) = integral(0)(infinity) ReJ(i tau)(x)f(x)dx, which depends on the index of a Bessel function, in connection with a continuous spectral Bessel function expansion in Sturm-Liouville boundary value problems. Here, we generalize this transformation by using the composition properties and a relationship with the Kontorovich-Lebedev and the Mellin-type transformations, and we give a variety of index transformations with a linear combination depending on a parameter of real and imaginary parts of a Bessel function. As it is shown the inversion formula consists of the integral over the index of a Lommel function.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_S0377-0427(97)00143-X.pdf | 437KB | download |